Search results
Results From The WOW.Com Content Network
Anaerobic oxidation of methane (AOM) is a methane-consuming microbial process occurring in anoxic marine and freshwater sediments. AOM is known to occur among mesophiles , but also in psychrophiles , thermophiles , halophiles , acidophiles , and alkophiles . [ 1 ]
Some organisms can oxidize methane, functionally reversing the process of methanogenesis, also referred to as the anaerobic oxidation of methane (AOM). Organisms performing AOM have been found in multiple marine and freshwater environments including methane seeps, hydrothermal vents, coastal sediments and sulfate-methane transition zones. [8]
Methane has a limited atmospheric lifetime, about 10 years, due to substantial methane sinks. The primary methane sink is atmospheric oxidation, from hydroxyl radicals (~90% of the total sink) and chlorine radicals (0-5% of the total sink). The rest is consumed by methanotrophs and other methane-oxidizing bacteria and archaea in soils (~5%). [7]
Methane (CH 4) concentrations in the atmosphere measured by the Advanced Global Atmospheric Gases Experiment (AGAGE) in the lower atmosphere (troposphere) at stations around the world. Values are given as pollution free monthly mean mole fractions in parts-per-billion. [1] Atmospheric methane is the methane present in Earth's atmosphere. [2]
Some specific methanotrophs can reduce nitrate, [19] nitrite, [20] iron, [21] sulfate, [22] or manganese ions and couple that to methane oxidation without syntrophic partner. Investigations in marine environments revealed that methane can be oxidized anaerobically by consortia of methane oxidizing archaea and sulfate-reducing bacteria .
Biological methanation takes place in a separate methanation plant. The gas is completely converted into methane before the infeed into the gas grid. The carbon dioxide, produced in a gas processing system, is converted into methane in a separate methanation plant, by adding hydrogen and can then be fed into the gas grid.
It can also be produced by the reaction of methane with the hydroxyl radical: OH • + CH 4 → CH • 3 + H 2 O. This process begins the major removal mechanism of methane from the atmosphere. The reaction occurs in the troposphere or stratosphere. In addition to being the largest known sink for atmospheric methane, this reaction is one of the ...
Methane monooxygenase (MMO) is an enzyme capable of oxidizing the C-H bond in methane as well as other alkanes. [1] Methane monooxygenase belongs to the class of oxidoreductase enzymes (EC 1.14.13.25). There are two forms of MMO: the well-studied soluble form (sMMO) and the particulate form (pMMO). [2]