Ad
related to: photosynthesis protons neutrons electrons and charges of elements formed- K-8 Science Lessons
Used in over 30,000 schools.
Loved by teachers and students.
- DIY Science Activities
Do-It-Yourself activities for kids.
Using common classroom materials.
- Grades 3-5 Science Videos
Get instant access to hours of fun
standards-based 3-5 videos & more.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Grades K-2 Science Videos
Get instant access to hours of fun
standards-based K-2 videos & more.
- Grades 6-8 Science Videos
Get instant access to hours of fun
standards-based 6-8 videos & more.
- K-8 Science Lessons
Search results
Results From The WOW.Com Content Network
The electron can be transferred to another molecule. As the ionized pigment returns to the ground state, it takes up an electron and gives off energy to the oxygen evolving complex so it can split water into electrons, protons, and molecular oxygen (after receiving energy from the pigment four times).
By replenishing lost electrons with electrons from the splitting of water, photosystem II provides the electrons for all of photosynthesis to occur. The hydrogen ions (protons) generated by the oxidation of water help to create a proton gradient that is used by ATP synthase to generate ATP .
In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
In the reaction center of PSII of plants and cyanobacteria, the light energy is used to split water into oxygen, protons, and electrons. The protons will be used in proton pumping to fuel the ATP synthase at the end of an electron transport chain. A majority of the reactions occur at the D1 and D2 subunits of PSII.
This initial charge separation yields a positive charge on P and a negative charge on the BPh. This process takes place in 10 picoseconds (10 −11 seconds). [1] The charges on the P + and the BPh − could undergo charge recombination in this state, which would waste the energy and convert it into heat. Several factors of the reaction center ...
Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2]
ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET reactions. ET reactions are relevant to photosynthesis and respiration and commonly involve transition metal complexes. [3] [4] In organic chemistry ET is a step in some industrial polymerization reactions.