Search results
Results From The WOW.Com Content Network
The Sorgenfrey line can thus be used to study right-sided limits: if : is a function, then the ordinary right-sided limit of at (when the codomain carries the standard topology) is the same as the usual limit of at when the domain is equipped with the lower limit topology and the codomain carries the standard topology.
the lower limit topology or upper limit topology on the set R of real numbers (useful in the study of one-sided limits); any T 0, hence Hausdorff, topological vector space that is infinite-dimensional, such as an infinite-dimensional Hilbert space.
Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
The Database of Original & Non-Theoretical Uses of Topology (DONUT) is a database of scholarly articles featuring practical applications of topological data analysis to various areas of science. DONUT was started in 2017 by Barbara Giunti, Janis Lazovskis, and Bastian Rieck, [ 126 ] and as of October 2023 currently contains 447 articles. [ 127 ]
The term topology was introduced by Johann Benedict Listing in the 19th century, although it was not until the first decades of the 20th century that the idea of a topological space was developed. This is a list of topology topics. See also: Topology glossary; List of topologies; List of general topology topics; List of geometric topology topics
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
Let (,) be a metric space, where is a given set. For any point and any non-empty subset , define the distance between the point and the subset: (,):= (,),.For any sequence of subsets {} = of , the Kuratowski limit inferior (or lower closed limit) of as ; is := {:,} = {: (,) =}; the Kuratowski limit superior (or upper closed limit) of as ; is := {:,} = {: (,) =}; If the Kuratowski limits ...