Search results
Results From The WOW.Com Content Network
Electromigration (red arrow) is due to the momentum transfer from the electrons moving in a wire. Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms.
Black's Equation is a mathematical model for the mean time to failure (MTTF) of a semiconductor circuit due to electromigration: a phenomenon of molecular rearrangement (movement) in the solid phase caused by an electromagnetic field.
Electrochemical migration (ECM) is the dissolution and movement of metal ions in presence of electric potential, which results in the growth of dendritic structures between anode and cathode.
The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces.
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and
Feedback-controlled electromigration (FCE) is an experimental technique to investigate the phenomenon known as electromigration. By controlling the voltage applied as the conductance varies it is possible to keep the voltage at a critical level for electromigration .
An electromagnetic wave propagating along a path C has the phase shift over C as if it was propagating a path in a vacuum, length of which, is equal to the optical path length of C. Thus, if a wave is traveling through several different media, then the optical path length of each medium can be added to find the total optical path length. The ...
For example, a naive quantum mechanical calculation of the ground-state energy density yields infinity, which is unreasonable. The difficulty lies in the fact that even though the Coulomb force diminishes with distance as 1/ r 2 , the average number of particles at each distance r is proportional to r 2 , assuming the fluid is fairly isotropic .