When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molar ionization energies of the elements - Wikipedia

    en.wikipedia.org/wiki/Molar_ionization_energies...

    This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms. The second, third, etc., molar ionization energy applies to the further removal of an electron from a singly, doubly, etc., charged ion.

  3. CPK coloring - Wikipedia

    en.wikipedia.org/wiki/CPK_coloring

    Several of the CPK colors refer mnemonically to colors of the pure elements or notable compound. For example, hydrogen is a colorless gas, carbon as charcoal, graphite or coke is black, sulfur powder is yellow, chlorine is a greenish gas, bromine is a dark red liquid, iodine in ether is violet, amorphous phosphorus is red, rust is dark orange-red, etc.

  4. Electrochemical gradient - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_gradient

    Electrochemical energy is one of the many interchangeable forms of potential energy through which energy may be conserved. It appears in electroanalytical chemistry and has industrial applications such as batteries and fuel cells. In biology, electrochemical gradients allow cells to control the direction ions move across membranes.

  5. Color of chemicals - Wikipedia

    en.wikipedia.org/wiki/Color_of_chemicals

    The color of chemicals is a physical property of chemicals that in most cases comes from the excitation of electrons due to an absorption of energy performed by the chemical. The study of chemical structure by means of energy absorption and release is generally referred to as spectroscopy .

  6. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the –1 ion or the zeroth ionization energy. [1]

  7. Doubly ionized oxygen - Wikipedia

    en.wikipedia.org/wiki/Doubly_ionized_oxygen

    In 1927, Ira Sprague Bowen published the current explanation identifying their source as doubly ionized oxygen. [1] Other transitions include the forbidden 88.4 μm and 51.8 μm transitions in the far infrared region. [2] Permitted lines of O III lie in the middle ultraviolet band and are hence inaccessible to terrestrial astronomy.

  8. Allotropes of oxygen - Wikipedia

    en.wikipedia.org/wiki/Allotropes_of_oxygen

    Singlet oxygen is the common name used for the two metastable states of molecular oxygen (O 2) with higher energy than the ground state triplet oxygen. Because of the differences in their electron shells, singlet oxygen has different chemical and physical properties than triplet oxygen, including absorbing and emitting light at different ...

  9. Solid oxygen - Wikipedia

    en.wikipedia.org/wiki/Solid_oxygen

    Solid oxygen forms at normal atmospheric pressure at a temperature below 54.36 K (−218.79 °C, −361.82 °F). Solid oxygen O 2 , like liquid oxygen , is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum.