Search results
Results From The WOW.Com Content Network
A demo for Union-Find when using Kruskal's algorithm to find minimum spanning tree. Disjoint-set data structures model the partitioning of a set, for example to keep track of the connected components of an undirected graph. This model can then be used to determine whether two vertices belong to the same component, or whether adding an edge ...
The simplest version of the algorithm uses the union-find data structure, which unlike other lowest common ancestor data structures can take more than constant time per operation when the number of pairs of nodes is similar in magnitude to the number of nodes. A later refinement by Gabow & Tarjan (1983) speeds the algorithm up to linear time.
The algorithm continues this way, and creates new region labels whenever necessary. The key to a fast algorithm, however, is how this merging is done. This algorithm uses the union-find data structure which provides excellent performance for keeping track of equivalence relationships. [14]
Union, a datum which may be one of a set of types Tagged union (also called a variant , discriminated union or sum type ), a union with a tag specifying which type the data is Abstract data types
An efficient implementation using a disjoint-set data structure can perform each union and find operation on two sets in nearly constant amortized time (specifically, (()) time; () < for any plausible value of ), so the running time of this algorithm is essentially proportional to the number of walls available to the maze.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Union-find_algorithm&oldid=279614428"
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]
The Jaccard similarity coefficient is a commonly used indicator of the similarity between two sets. Let U be a set and A and B be subsets of U, then the Jaccard index is defined to be the ratio of the number of elements of their intersection and the number of elements of their union: