Search results
Results From The WOW.Com Content Network
In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces , then the mechanical energy is constant.
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
Disregarding loss or gain however, the sum of the kinetic and potential energy remains constant. Kinetic energy can be passed from one object to another. In the game of billiards, the player imposes kinetic energy on the cue ball by striking it with the cue stick. If the cue ball collides with another ball, it slows down dramatically, and the ...
The Hamiltonian of a system represents the total energy of the system; that is, the sum of the kinetic and potential energies of all particles associated with the system. . The Hamiltonian takes different forms and can be simplified in some cases by taking into account the concrete characteristics of the system under analysis, such as single or several particles in the system, interaction ...
More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation.
The minimum total potential energy principle is a fundamental concept used in physics and engineering.It dictates that at low temperatures a structure or body shall deform or displace to a position that (locally) minimizes the total potential energy, with the lost potential energy being converted into kinetic energy (specifically heat).
Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.
Kinetic energy in special relativity and Newtonian mechanics. Relativistic kinetic energy increases to infinity when approaching the speed of light, thus no massive body can reach this speed. Tests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass.