When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...

  3. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In the Middle Ages, the development of algebra by Muslim mathematicians allowed irrational numbers to be treated as algebraic objects. [19] Middle Eastern mathematicians also merged the concepts of " number " and " magnitude " into a more general idea of real numbers , criticized Euclid's idea of ratios , developed the theory of composite ...

  4. Wadim Zudilin - Wikipedia

    en.wikipedia.org/wiki/Wadim_Zudilin

    He has reproved Apéry's theorem that ζ(3) is irrational, and expanded it. Zudilin proved that at least one of the four numbers ζ(5), ζ(7), ζ(9), or ζ(11) is irrational. [2] For that accomplishment, he won the Distinguished Award of the Hardy-Ramanujan Society in 2001. [3]

  5. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    Later, in 1891, Cantor used his more familiar diagonal argument to prove the same result. [17] While Cantor's result is often quoted as being purely existential and thus unusable for constructing a single transcendental number, [18] [19] the proofs in both the aforementioned papers give methods to construct transcendental numbers. [20]

  6. Apéry's constant - Wikipedia

    en.wikipedia.org/wiki/Apéry's_constant

    Although this has so far not produced any results on specific numbers, it is known that infinitely many of the odd zeta constants ζ(2n + 1) are irrational. [7] In particular at least one of ζ(5), ζ(7), ζ(9), and ζ(11) must be irrational. [8] Apéry's constant has not yet been proved transcendental, but it is known to be an algebraic period ...

  7. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction /, where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus .

  8. Commensurability (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Commensurability_(mathematics)

    However, the numbers and 2 are incommensurable because their ratio, , is an irrational number. More generally, it is immediate from the definition that if a and b are any two non-zero rational numbers, then a and b are commensurable; it is also immediate that if a is any irrational number and b is any non-zero rational number, then a and b are ...

  9. Dedekind cut - Wikipedia

    en.wikipedia.org/wiki/Dedekind_cut

    Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. [3] In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set.