Search results
Results From The WOW.Com Content Network
A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...
In the Middle Ages, the development of algebra by Muslim mathematicians allowed irrational numbers to be treated as algebraic objects. [19] Middle Eastern mathematicians also merged the concepts of " number " and " magnitude " into a more general idea of real numbers , criticized Euclid's idea of ratios , developed the theory of composite ...
He has reproved Apéry's theorem that ζ(3) is irrational, and expanded it. Zudilin proved that at least one of the four numbers ζ(5), ζ(7), ζ(9), or ζ(11) is irrational. [2] For that accomplishment, he won the Distinguished Award of the Hardy-Ramanujan Society in 2001. [3]
Later, in 1891, Cantor used his more familiar diagonal argument to prove the same result. [17] While Cantor's result is often quoted as being purely existential and thus unusable for constructing a single transcendental number, [18] [19] the proofs in both the aforementioned papers give methods to construct transcendental numbers. [20]
Although this has so far not produced any results on specific numbers, it is known that infinitely many of the odd zeta constants ζ(2n + 1) are irrational. [7] In particular at least one of ζ(5), ζ(7), ζ(9), and ζ(11) must be irrational. [8] Apéry's constant has not yet been proved transcendental, but it is known to be an algebraic period ...
In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction /, where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus .
However, the numbers and 2 are incommensurable because their ratio, , is an irrational number. More generally, it is immediate from the definition that if a and b are any two non-zero rational numbers, then a and b are commensurable; it is also immediate that if a is any irrational number and b is any non-zero rational number, then a and b are ...
Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. [3] In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set.