Search results
Results From The WOW.Com Content Network
This definition is technically called Q-convergence, short for quotient-convergence, and the rates and orders are called rates and orders of Q-convergence when that technical specificity is needed. § R-convergence , below, is an appropriate alternative when this limit does not exist.
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.
In the secant version the lines of true scale on the projection are no longer parallel to central meridian; they curve slightly. The convergence angle between projected meridians and the x constant grid lines is no longer zero (except on the equator) so that a grid bearing must be corrected to obtain an azimuth from true north. The difference ...
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...
The property relates to the rate of convergence of sequences of random variables and requires that this rate is essentially the same within a region of the parameter space being considered. For instance, stochastic equicontinuity, along with other conditions, can be used to show uniform weak convergence, which can be used to prove the ...
In mathematics, Anderson acceleration, also called Anderson mixing, is a method for the acceleration of the convergence rate of fixed-point iterations.Introduced by Donald G. Anderson, [1] this technique can be used to find the solution to fixed point equations () = often arising in the field of computational science.
Is there a fixed order of convergence for repeated roots with the secant method? For instance, with the Newton-Raphson method, R=2 (quadratic) for simple roots and R=1 for repeated roots. For the Secant Method, R=1.618.... for simple roots, but what about repeated/complex roots? Computer Guru 21:40, 26 May 2008 (UTC)