Search results
Results From The WOW.Com Content Network
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
Radar cross-section (RCS), denoted σ, also called radar signature, is a measure of how detectable an object is by radar. A larger RCS indicates that an object is more easily detected. [1] An object reflects a limited amount of radar energy back to the source. The factors that influence this include: [1] the material with which the target is made;
The formula for the fine structure is given by and since the period of the PRF (T) appears at the bottom of the fine spectrum equation, there will be fewer lines if higher PRFs are used. These facts affect the decisions made by radar designers when considering the trade-offs that need to be made when trying to overcome the ambiguities that ...
Radar theory This page was last edited on 26 September 2019, at 06:28 (UTC) . Text is available under the Creative Commons Attribution-ShareAlike 4.0 License ; additional terms may apply.
A radar tracker is a component of a radar system, or an associated command and control (C2) system, that associates consecutive radar observations of the same target into tracks. It is particularly useful when the radar system is reporting data from several different targets or when it is necessary to combine the data from several different ...
Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment.
Fluctuation loss is an effect seen in radar systems as the target object moves or changes its orientation relative to the radar system. It was extensively studied during the 1950s by Peter Swerling, who introduced the Swerling models to allow the effect to be simulated.
An object at height h above the ground and slant range R forms an angle α that can be calculated through sin α = h / R.By re-arrangement, R = h / sin α, or R = h csc α. The radar equation states that the signal received from an object, P e, varies inversely with the 4th power of range and directly as the square of the antenna gain, G, such that P e ~ G 2 / R 4.