Ad
related to: nonlinear equations fiveable
Search results
Results From The WOW.Com Content Network
Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation
Nonlinear algebra is the nonlinear analogue to linear algebra, generalizing notions of spaces and transformations coming from the linear setting. [1] Algebraic geometry is one of the main areas of mathematical research supporting nonlinear algebra, while major components coming from computational mathematics support the development of the area into maturity.
In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture .
This property is rare in nonlinear equations. Poincaré and L. Fuchs showed that any first order equation with the Painlevé property can be transformed into the Weierstrass elliptic equation or the Riccati equation, which can all be solved explicitly in terms of integration and previously known special functions.
In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail.
Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations, F ( u , λ ) = 0. {\displaystyle F(\mathbf {u} ,\lambda )=0.} [ 1 ] The parameter λ {\displaystyle \lambda } is usually a real scalar and the solution u {\displaystyle \mathbf {u} } is an n -vector .