When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotating magnetic field - Wikipedia

    en.wikipedia.org/wiki/Rotating_magnetic_field

    The rotating magnetic field is the key principle in the operation of induction machines.The induction motor consists of a stator and rotor.In the stator a group of fixed windings are so arranged that a two phase current, for example, produces a magnetic field which rotates at an angular velocity determined by the frequency of the alternating current.

  3. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.

  4. Synchronous motor - Wikipedia

    en.wikipedia.org/wiki/Synchronous_motor

    In synchronous motors, the stator carries 3 phase currents and produces 3 phase rotating magnetic flux (and therefore a rotating magnetic field). The rotor eventually locks in with the rotating magnetic field and rotates along with it. Once the rotor field locks in with the rotating magnetic field, the motor is said to be synched.

  5. Mathematics of three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_three-phase...

    For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.

  6. Magnetic Thermodynamic Systems - Wikipedia

    en.wikipedia.org/wiki/Magnetic_Thermodynamic_Systems

    Common magnetic systems examined through the lens of Thermodynamics are ferromagnets and paramagnets as well as the ferromagnet to paramagnet phase transition. It is also possible to derive thermodynamic quantities in a generalized form for an arbitrary magnetic system using the formulation of magnetic work. [1]

  7. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance (⁠ 1 / distance 3 ⁠) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]

  8. Magnetic circuit - Wikipedia

    en.wikipedia.org/wiki/Magnetic_circuit

    For a magnetic component the area S used to calculate the magnetic flux Φ is usually chosen to be the cross-sectional area of the component. The SI unit of magnetic flux is the weber (in derived units: volt-seconds), and the unit of magnetic flux density (or "magnetic induction", B) is the weber per square meter, or tesla.

  9. Magnetomotive force - Wikipedia

    en.wikipedia.org/wiki/Magnetomotive_force

    It is the property of certain substances or phenomena that give rise to magnetic fields: =, where Φ is the magnetic flux and is the reluctance of the circuit. It can be seen that the magnetomotive force plays a role in this equation analogous to the voltage V in Ohm's law , V = IR , since it is the cause of magnetic flux in a magnetic circuit ...