When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    As with the Hilbert problems, one of the prize problems (the Poincaré conjecture) was solved relatively soon after the problems were announced. The Riemann hypothesis is noteworthy for its appearance on the list of Hilbert problems, Smale's list, the list of Millennium Prize Problems, and even the Weil conjectures, in its geometric guise.

  3. Category:Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Category:Hilbert's_problems

    Hilbert's second problem; Hilbert's third problem; Hilbert's fourth problem; Hilbert's fifth problem; No small subgroup; Hilbert's sixth problem; Hilbert's seventh problem; Hilbert's eighth problem; Hilbert's ninth problem; Hilbert's tenth problem; Hilbert's eleventh problem; Hilbert's twelfth problem; Hilbert's thirteenth problem; Hilbert's ...

  4. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  5. Hilbert's twentieth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_twentieth_problem

    Hilbert noted that there existed methods for solving partial differential equations where the function's values were given at the boundary, but the problem asked for methods for solving partial differential equations with more complicated conditions on the boundary (e.g., involving derivatives of the function), or for solving calculus of variation problems in more than 1 dimension (for example ...

  6. Hilbert's second problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_second_problem

    In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in Hilbert (1900) , which include a second order completeness axiom.

  7. Hilbert's twenty-first problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_twenty-first_problem

    This problem is more commonly called the Riemann–Hilbert problem.It led to several bijective correspondences known as 'Riemann–Hilbert correspondences', for flat algebraic connections with regular singularities and more generally regular holonomic D-modules or flat algebraic connections with regular singularities on principal G-bundles, in all dimensions.

  8. Hilbert's fourteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_fourteenth_problem

    In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated. The setting is as follows: Assume that k is a field and let K be a subfield of the field of rational functions in n variables, k(x 1, ..., x n) over k.

  9. Hilbert–Arnold problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Arnold_problem

    In mathematics, particularly in dynamical systems, the Hilbert–Arnold problem is an unsolved problem concerning the estimation of limit cycles.It asks whether in a generic [disambiguation needed] finite-parameter family of smooth vector fields on a sphere with a compact parameter base, the number of limit cycles is uniformly bounded across all parameter values.