Search results
Results From The WOW.Com Content Network
As with the Hilbert problems, one of the prize problems (the Poincaré conjecture) was solved relatively soon after the problems were announced. The Riemann hypothesis is noteworthy for its appearance on the list of Hilbert problems, Smale's list, the list of Millennium Prize Problems, and even the Weil conjectures, in its geometric guise.
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
Hilbert's 16th problem was posed by David Hilbert at the Paris conference of the International Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics. [1] The original problem was posed as the Problem of the topology of algebraic curves and surfaces (Problem der Topologie algebraischer Kurven und Flächen).
Pages in category "Hilbert's problems" The following 35 pages are in this category, out of 35 total. This list may not reflect recent changes. ...
Hilbert's eighth problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns number theory , and in particular the Riemann hypothesis , [ 1 ] although it is also concerned with the Goldbach conjecture .
"The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the MRDP theorem resolving Hilbert's tenth problem. [6] Determining the domain of a solution to an ordinary differential equation of the form
Hilbert’s sixth problem was a proposal to expand the axiomatic method outside the existing mathematical disciplines, to physics and beyond. This expansion requires development of semantics of physics with formal analysis of the notion of physical reality that should be done. [9]
David Hilbert presented what is now called his nineteenth problem in his speech at the second International Congress of Mathematicians. [5] In (Hilbert 1900, p. 288) he states that, in his opinion, one of the most remarkable facts of the theory of analytic functions is that there exist classes of partial differential equations which admit only analytic functions as solutions, listing Laplace's ...