When.com Web Search

  1. Ad

    related to: hilbert's tenth problem wikipedia

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...

  4. Julia Robinson - Wikipedia

    en.wikipedia.org/wiki/Julia_Robinson

    Julia Hall Bowman Robinson (December 8, 1919 – July 30, 1985) was an American mathematician noted for her contributions to the fields of computability theory and computational complexity theory—most notably in decision problems. Her work on Hilbert's tenth problem (now known as Matiyasevich's theorem or the MRDP theorem) played a crucial ...

  5. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.

  6. Yuri Matiyasevich - Wikipedia

    en.wikipedia.org/wiki/Yuri_Matiyasevich

    In 1972, at the age of 25, he defended his doctoral dissertation on the unsolvability of Hilbert's tenth problem. [7] From 1974 Matiyasevich worked in scientific positions at LOMI, first as a senior researcher, in 1980 he headed the Laboratory of Mathematical Logic.

  7. Diophantine set - Wikipedia

    en.wikipedia.org/wiki/Diophantine_set

    Hilbert's tenth problem asks for a general algorithm deciding the solvability of Diophantine equations. The conjunction of Matiyasevich's result with the fact that most recursively enumerable languages are not decidable implies that a solution to Hilbert's tenth problem is impossible.

  8. Category:Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Category:Hilbert's_problems

    Hilbert's second problem; Hilbert's third problem; Hilbert's fourth problem; Hilbert's fifth problem; No small subgroup; Hilbert's sixth problem; Hilbert's seventh problem; Hilbert's eighth problem; Hilbert's ninth problem; Hilbert's tenth problem; Hilbert's eleventh problem; Hilbert's twelfth problem; Hilbert's thirteenth problem; Hilbert's ...

  9. Martin Davis (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Martin_Davis_(mathematician)

    His work on Hilbert's tenth problem led to the MRDP theorem. He also advanced the Post–Turing model and co-developed the Davis–Putnam–Logemann–Loveland (DPLL) algorithm, which is foundational for Boolean satisfiability solvers. Davis won the Leroy P. Steele Prize, the Chauvenet Prize (with Reuben Hersh), and the Lester R. Ford Award.