When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic orthogonality - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_orthogonality

    The vectors z 1 and z 2 in the complex number plane, and w 1 and w 2 in the hyperbolic number plane are said to be respectively Euclidean orthogonal or hyperbolic orthogonal if their respective inner products [bilinear forms] are zero. [3] The bilinear form may be computed as the real part of the complex product of one number with the conjugate ...

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola .

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).

  5. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Therefore, in hyperbolic geometry the ratio of a circle's circumference to its radius is always strictly greater than , though it can be made arbitrarily close by selecting a small enough circle. If the Gaussian curvature of the plane is −1 then the geodesic curvature of a circle of radius r is: 1 tanh ⁡ ( r ) {\displaystyle {\frac {1 ...

  6. Unit hyperbola - Wikipedia

    en.wikipedia.org/wiki/Unit_hyperbola

    The unit hyperbola finds applications where the circle must be replaced with the hyperbola for purposes of analytic geometry. A prominent instance is the depiction of spacetime as a pseudo-Euclidean space. There the asymptotes of the unit hyperbola form a light cone.

  7. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .

  8. Hypercycle (geometry) - Wikipedia

    en.wikipedia.org/wiki/Hypercycle_(geometry)

    A Poincaré disk showing the hypercycle HC that is determined by the straight line L (termed straight because it cuts the horizon at right angles) and point P. In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis).

  9. Orthogonal circles - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_circles

    In geometry, two circles are said to be orthogonal if their respective tangent lines at the points of intersection are perpendicular (meet at a right angle). A straight line through a circle's center is orthogonal to it, and if straight lines are also considered as a kind of generalized circles , for instance in inversive geometry , then an ...