Search results
Results From The WOW.Com Content Network
A code is defined to be equidistant if and only if there exists some constant d such that the distance between any two of the code's distinct codewords is equal to d. [4] In 1984 Arrigo Bonisoli determined the structure of linear one-weight codes over finite fields and proved that every equidistant linear code is a sequence of dual Hamming codes .
There also exists a Las Vegas construction that takes a random linear code and checks if this code has good Hamming distance, but this construction also has an exponential runtime. For sufficiently large non-prime q and for certain ranges of the variable δ, the Gilbert–Varshamov bound is surpassed by the Tsfasman–Vladut–Zink bound .
In the mathematics of coding theory, the Griesmer bound, named after James Hugo Griesmer, is a bound on the length of linear binary codes of dimension k and minimum distance d. There is also a very similar version for non-binary codes.
The distance or minimum distance d of a block code is the minimum number of positions in which ... If the block code is a linear block code, then the square ...
In the linear code case a different proof of the Singleton bound can be obtained by observing ... D.D (1958), "A Note on Upper Bounds for Minimum Distance Codes", ...
The Singleton bound states that the minimum distance d of a linear block code of size (n,k) is upper-bounded by n − k + 1. The distance d was usually understood to limit the error-correction capability to ⌊(d−1) / 2⌋. The Reed–Solomon code achieves this bound with equality, and can thus correct up to ⌊(n−k) / 2⌋ errors. However ...
The distance of a code is the minimum Hamming distance between any two distinct codewords, i.e., the minimum number of positions at which two distinct codewords differ. Since the Walsh–Hadamard code is a linear code, the distance is equal to the minimum Hamming weight among all of its non-zero codewords.
[4] [5] In the case where C is a linear subspace of its Hamming space, it is called a linear code. [4] A typical example of linear code is the Hamming code. Codes defined via a Hamming space necessarily have the same length for every codeword, so they are called block codes when it is necessary to distinguish them from variable-length codes ...