When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Net force - Wikipedia

    en.wikipedia.org/wiki/Net_force

    Resultant force and torque replaces the effects of a system of forces acting on the movement of a rigid body. An interesting special case is a torque-free resultant, which can be found as follows: Vector addition is used to find the net force; Use the equation to determine the point of application with zero torque:

  3. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1]

  4. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...

  5. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    Because the angle of the equilibrant force is opposite of the resultant force, if 180 degrees are added or subtracted to the resultant force's angle, the equilibrant force's angle will be known. Multiplying the resultant force vector by a -1 will give the correct equilibrant force vector: <-10, -8>N x (-1) = <10, 8>N = C.

  6. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...

  7. Resultant - Wikipedia

    en.wikipedia.org/wiki/Resultant

    Macaulay's resultant provides a method, called "U-resultant" by Macaulay, for solving systems of polynomial equations. Given n − 1 homogeneous polynomials , …,, of degrees , …,, in n indeterminates , …,, over a field k, their U-resultant is the resultant of the n polynomials , …,,, where = + + is the generic linear form whose ...

  8. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Suppose two forces act on a particle at the origin (the "tails" of the vectors) of Figure 1. Let the lengths of the vectors F 1 and F 2 represent the velocities the two forces could produce in the particle by acting for a given time, and let the direction of each represent the direction in which they act. Each force acts independently and will ...

  9. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    In three dimensions, the torque is a pseudovector; for point particles, it is given by the cross product of the displacement vector and the force vector. The direction of the torque can be determined by using the right hand grip rule : if the fingers of the right hand are curled from the direction of the lever arm to the direction of the force ...