When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.

  3. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve. The Weierstrass function has historically served the role of a pathological function, being the first published ...

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    It states that if f is continuously differentiable, then around most points, the zero set of f looks like graphs of functions pasted together. The points where this is not true are determined by a condition on the derivative of f. The circle, for instance, can be pasted together from the graphs of the two functions ± √ 1 - x 2.

  5. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    The function f defined by f(0) = 0 and f(x) = x 3/2 sin(1/x) for 0<x≤1 gives an example of a function that is differentiable on a compact set while not locally Lipschitz because its derivative function is not bounded. See also the first property below.

  6. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (− r ) = f ( r ) , Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero.

  7. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap . A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. [1]

  8. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Differentiable functions between two manifolds are needed in order to formulate suitable notions of submanifolds, and other related concepts. If f : M → N is a differentiable function from a differentiable manifold M of dimension m to another differentiable manifold N of dimension n, then the differential of f is a mapping df : TM → TN.

  9. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    The definitions are applied to graphs as follows. If a function (a -cochain) is defined at the nodes of a graph: ,,, … then its exterior derivative (or the differential) is the difference, i.e., the following function defined on the edges of the graph (-cochain):