Search results
Results From The WOW.Com Content Network
A fatty acid chain is monounsaturated if it contains one double bond, and polyunsaturated if it contains more than one double bond. A saturated fat has no carbon-to-carbon double bonds, so the maximum possible number of hydrogen is bonded to carbon, and thus, is considered to be "saturated" with hydrogen atoms.
The first fatty acid residue is saturated (blue highlighted), the second fatty acid residue contains one double bond within the carbon chain (green highlighted). The third fatty acid residue (a polyunsaturated fatty acid residue, highlighted in red) contains three double bonds within the carbon chain. All carbon-carbon double bonds shown are ...
In either numbering scheme, the position of a double bond in a fatty acid chain is always specified by giving the label of the carbon closest to the carboxyl end. [d] Thus, in an 18 carbon fatty acid, a double bond between C-12 (or ω−6) and C-13 (or ω−5) is said to be "at" position C-12 or ω−6. The IUPAC naming of the acid, such as ...
The side chains of the standard amino acids have a variety of chemical structures and properties, and it is the combined effect of all amino acids that determines its three-dimensional structure and chemical reactivity. [35] The amino acids in a polypeptide chain are linked by peptide bonds between amino and carboxyl
The ester/thioester bond can be resolved in several ways: Simple hydrolysis will split the polypeptide chain, where the displaced amino group becomes the new N-terminus. This is seen in the maturation of glycosylasparaginase. A β-elimination reaction also splits the chain, but results in a pyruvoyl group at the new N-terminus.
Cis-double bonds cause the fatty acid chain to bend, an effect that is compounded with more double bonds in the chain. Three double bonds in 18-carbon linolenic acid, the most abundant fatty-acyl chains of plant thylakoid membranes, render these membranes highly fluid despite environmental low-temperatures, [24] and also makes linolenic acid ...
Unsaturated fatty acids have at least one double bond, creating a "kink" in the chain. The double bond increases fluidity. While the addition of one double bond raises the melting temperature, research conducted by Xiaoguang Yang et. al. supports that four or more double bonds has a direct correlation to membrane fluidity.
The folding is driven by the non-specific hydrophobic interactions, the burial of hydrophobic residues from water, but the structure is stable only when the parts of a protein domain are locked into place by specific tertiary interactions, such as salt bridges, hydrogen bonds, and the tight packing of side chains and disulfide bonds.