Search results
Results From The WOW.Com Content Network
The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ 0 (n), or the number-of-divisors function [1] [2] (OEIS: A000005). When z is 1, the function is called the sigma function or sum-of-divisors function , [ 1 ] [ 3 ] and the subscript is often omitted, so σ ( n ) is the same as σ 1 ( n ) ( OEIS ...
A prime number is a natural number that has no natural number divisors other than the number 1 and itself.. To find all the prime numbers less than or equal to a given integer N, a sieve algorithm examines a set of candidates in the range 2, 3, …, N, and eliminates those that are not prime, leaving the primes at the end.
A number that is not part of any friendly pair is called solitary. The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists m ≠ n such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.
Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer.
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
The number of unitary divisors of a number n is 2 k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers p r p of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the prime divisors {p} of N, of the prime powers p r p for p ...
There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.