When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...

  3. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    Volumes of balls in dimensions 0 through 25; unit ball in red. In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An n-ball is a ball in an n-dimensional Euclidean space.

  4. Cannonball problem - Wikipedia

    en.wikipedia.org/wiki/Cannonball_problem

    This is comparable with the 24th square pyramid having a total of 70 2 cannonballs. [5] Similarly, a pentagonal-pyramid version of the cannonball problem to produce a perfect square, would have N = 8, yielding a total of (14 × 14 = ) 196 cannonballs. [6] The only numbers that are simultaneously triangular and square pyramidal are 1, 55, 91 ...

  5. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  6. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    This is an application of Cavalieri's principle: volumes with equal-sized corresponding cross-sections are equal. Indeed, the area of the cross-section is the same as that of the corresponding cross-section of a sphere of radius h / 2 {\displaystyle h/2} , which has volume 4 3 π ( h 2 ) 3 = π h 3 6 . {\displaystyle {\frac {4}{3}}\pi \left ...

  7. Dissection problem - Wikipedia

    en.wikipedia.org/wiki/Dissection_problem

    In geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another).

  8. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution ) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...

  9. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing circles in a square - closely related to spreading points in a unit square with the objective of finding the greatest minimal separation, d n, between points. To convert between these two formulations of the problem, the square side for unit circles will be L = 2 + 2 / d n {\displaystyle L=2+2/d_{n}} .