Search results
Results From The WOW.Com Content Network
The canonical Watson-Crick base pairs, G:C and A:T/U as well as most of the non-canonical ones are stabilized by two or more (e.g. 3 in the case of G:C cWW) hydrogen bonds. Justifiably, a significant amount of research on non-canonical base pairs has been carried out towards bench-marking their strengths (interaction energies) and (geometric ...
Chemical structures for Watson–Crick and Hoogsteen A•T and G•C+ base pairs. The Hoogsteen geometry can be achieved by purine rotation around the glycosidic bond (χ) and base-flipping (θ), affecting simultaneously C8 and C1 ′ (yellow). [1] A Hoogsteen base pair is a variation of base-pairing in nucleic acids such as the A•T pair.
Alternate hydrogen bonding patterns, such as the wobble base pair and Hoogsteen base pair, also occur—particularly in RNA—giving rise to complex and functional tertiary structures. Importantly, pairing is the mechanism by which codons on messenger RNA molecules are recognized by anticodons on transfer RNA during protein translation .
The A–T pairing is based on two hydrogen bonds, while the C–G pairing is based on three. In both cases, the hydrogen bonds are between the amine and carbonyl groups on the complementary bases. Nucleobases such as adenine, guanine, xanthine , hypoxanthine , purine, 2,6-diaminopurine , and 6,8-diaminopurine may have formed in outer space as ...
An ubiquitous example of a hydrogen bond is found between water molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. The simplest case is a pair of water molecules with one hydrogen bond between them, which is called the water dimer and is often used as a model system. When more molecules are present, as is ...
Non-covalent hydrogen bonds between the bases are shown as dashed lines. The wiggly lines stand for the connection to the pentose sugar and point in the direction of the minor groove. Hydrogen bonding is the chemical interaction that underlies the base-pairing rules described above.
Figure 1. TATA box structural elements. The TATA box consensus sequence is TATAWAW, where W is either A or T. In molecular biology, the TATA box (also called the Goldberg–Hogness box) [1] is a sequence of DNA found in the core promoter region of genes in archaea and eukaryotes. [2]
Either or both of the digits may be preceded by a bond type to indicate the type of the ring-closing bond. For example, cyclopropene is usually written C1=CC1, but if the double bond is chosen as the ring-closing bond, it may be written as C=1CC1, C1CC=1, or C=1CC=1. (The first form is preferred.)