Search results
Results From The WOW.Com Content Network
[1]: 226 Since this function is generally difficult to compute exactly, and the running time for small inputs is usually not consequential, one commonly focuses on the behavior of the complexity when the input size increases—that is, the asymptotic behavior of the complexity. Therefore, the time complexity is commonly expressed using big O ...
A decision problem is a question which, for every input in some infinite set of inputs, requires a "yes" or "no" answer. [2] Those inputs can be numbers (for example, the decision problem "is the input a prime number?") or values of some other kind, such as strings of a formal language.
Although described above in the form of a program in a high-level language, the same algorithm may be implemented with the same asymptotic space bound on a Turing machine. This algorithm can be applied to an implicit graph whose vertices represent the configurations of a nondeterministic Turing machine and its tape, running within a given space ...
Since the time taken on different inputs of the same size can be different, the worst-case time complexity () is defined to be the maximum time taken over all inputs of size . If T ( n ) {\displaystyle T(n)} is a polynomial in n {\displaystyle n} , then the algorithm is said to be a polynomial time algorithm.
In other words, for a given input size n greater than some n 0 and a constant c, the run-time of that algorithm will never be larger than c × f(n). This concept is frequently expressed using Big O notation. For example, since the run-time of insertion sort grows quadratically as its input size increases, insertion sort can be said to be of ...
Negative results – Showing that certain classes cannot be learned in polynomial time. [2] Negative results often rely on commonly believed, but yet unproven assumptions, [citation needed] such as: Computational complexity – P ≠ NP (the P versus NP problem); Cryptographic – One-way functions exist.
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
It turns out that there is a natural connection between circuit complexity and time complexity. Intuitively, a language with small time complexity (that is, requires relatively few sequential operations on a Turing machine), also has a small circuit complexity (that is, requires relatively few Boolean operations).