Search results
Results From The WOW.Com Content Network
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]
A direct practical application of the heat equation, in conjunction with Fourier theory, in spherical coordinates, is the prediction of thermal transfer profiles and the measurement of the thermal diffusivity in polymers (Unsworth and Duarte). This dual theoretical-experimental method is applicable to rubber, various other polymeric materials ...
The law of heat conduction, also known as Fourier's law (compare Fourier's heat equation), states that the rate of heat transfer through a material is proportional to the negative gradient in the temperature and to the area, at right angles to that gradient, through which the heat flows.
First, the body must be at uniform temperature initially. Second, the Fourier's number of the analyzed object should be bigger than 0.2. Additionally, the temperature of the surroundings and the convective heat transfer coefficient must remain constant and uniform. Also, there must be no heat generation from the body itself. [1] [3] [4]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
This mathematical model is inconsistent with special relativity: the Green function associated to the heat equation (also known as heat kernel) has support that extends outside the light-cone, leading to faster-than-light propagation of information. For example, consider a pulse of heat at the origin; then according to Fourier equation, it is ...
A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...