When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flux linkage - Wikipedia

    en.wikipedia.org/wiki/Flux_linkage

    Theoretically, the case of a multi-turn induction coil is explained and treated perfectly rigorously with Riemann surfaces: what is called "flux linkage" in engineering is simply the flux passing through the Riemann surface bounded by the coil's turns, hence no particularly useful distinction between flux and "linkage". Due to the equivalence ...

  3. Flux - Wikipedia

    en.wikipedia.org/wiki/Flux

    Energy flux, the rate of transfer of energy through a unit area (J·m −2 ·s −1). The radiative flux and heat flux are specific cases of energy flux. Particle flux, the rate of transfer of particles through a unit area ([number of particles] m −2 ·s −1) These fluxes are vectors at each point in space, and have a definite magnitude and ...

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered ...

  5. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.

  6. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    That flux can be reduced by absorption, scattering or reflection, resulting in energy transmission over a path of less than 100%. The concept of radiative transfer extends beyond simple laboratory phenomena to include thermal emission of radiation by the medium - which can result in more photons arriving at the end of a path than entering it.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Stefan surmised that 1/3 of the energy flux from the Sun is absorbed by the Earth's atmosphere, so he took for the correct Sun's energy flux a value 3/2 times greater than Soret's value, namely 29 × 3/2 = 43.5. Precise measurements of atmospheric absorption were not made until 1888 and 1904. The temperature Stefan obtained was a median value ...

  8. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m 2 ); kg/s 3 in SI base units .

  9. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. [a] In the SI system, it has units watts per square metre (W/m 2), or kg⋅s −3 in base units.