Search results
Results From The WOW.Com Content Network
Phenol (also known as carbolic acid, phenolic acid, or benzenol) is an aromatic organic compound with the molecular formula C 6 H 5 OH. [5] It is a white crystalline solid that is volatile. The molecule consists of a phenyl group (−C 6 H 5) bonded to a hydroxy group (−OH). Mildly acidic, it requires careful handling because it can cause ...
Alkali metal phenolates, such as sodium phenolate hydrolyze in aqueous solution to form basic solutions. [2] At pH = 10, phenol and phenolate are in approximately 1:1 proportions. The phenoxide anion (aka phenolate ) is a strong nucleophile with a comparable to the one of carbanions or tertiary amines. [ 3 ]
Sodium phenoxide is a moderately strong base. Acidification gives phenol: [5] PhOH ⇌ PhO − + H + (K = 10 −10) The acid-base behavior is complicated by homoassociation, reflecting the association of phenol and phenoxide. [6] Sodium phenoxide reacts with alkylating agents to afford alkyl phenyl ethers: [2]
The simplest is phenol, C 6 H 5 OH. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule. Phenol – the simplest of the phenols Chemical structure of salicylic acid, the active metabolite of aspirin. Phenols are both synthesized industrially and produced by plants and ...
Thiophenol is an organosulfur compound with the formula C 6 H 5 SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol.The chemical structures of thiophenol and its derivatives are analogous to phenols, where the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring in phenol is replaced by a sulfur atom.
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
The original reaction was a mixture of the reagents phenol, chloroform, and acetone in the presence of a sodium hydroxide solution. [2] Prior to Bargellini's research, the product attributed to this multi-component reaction (MCR) had been described as a phenol derivative in chemistry texts at the time.
The first example of an oxidative phenol coupling in synthetic chemistry can be traced to Julius Löwe’s 1868 synthesis of ellagic acid, accomplished by heating gallic acid with arsenic acid. [8] In the synthesis of complex organic compounds, oxidative phenol couplings are sometimes employed.