When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.

  3. Algorithmic inference - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_inference

    Algorithmic inference gathers new developments in the statistical inference methods made feasible by the powerful computing devices widely available to any data analyst. Cornerstones in this field are computational learning theory, granular computing, bioinformatics, and, long ago, structural probability (Fraser 1966). The main focus is on the ...

  4. Bradley–Terry model - Wikipedia

    en.wikipedia.org/wiki/Bradley–Terry_model

    The model is named after Ralph A. Bradley and Milton E. Terry, [3] who presented it in 1952, [4] although it had already been studied by Ernst Zermelo in the 1920s. [1] [5] [6] Applications of the model include the ranking of competitors in sports, chess, and other competitions, [7] the ranking of products in paired comparison surveys of consumer choice, analysis of dominance hierarchies ...

  5. Probabilistic programming - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_programming

    Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.

  6. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    A common subclass of classification is probabilistic classification. Algorithms of this nature use statistical inference to find the best class for a given instance. Unlike other algorithms, which simply output a "best" class, probabilistic algorithms output a probability of the instance being a member of each of the possible classes. The best ...

  7. Variable elimination - Wikipedia

    en.wikipedia.org/wiki/Variable_elimination

    Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields. [1] It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables.

  8. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    As an example, a teacher wants to estimate how well a student did on the SAT. The teacher uses the current grade point average (GPA) of the student for an estimate. Their current GPA, denoted by Y {\displaystyle Y} , has a likelihood given by some probability function with parameter θ {\displaystyle \theta } , i.e. Y ∣ θ ∼ P ( Y ∣ θ ...

  9. Algorithmic probability - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_probability

    In algorithmic information theory, algorithmic probability, also known as Solomonoff probability, is a mathematical method of assigning a prior probability to a given observation. It was invented by Ray Solomonoff in the 1960s. [2] It is used in inductive inference theory and analyses of algorithms.

  1. Related searches probabilistic inference algorithm in python definition example video for students

    probabilistic programming languageprobabilistic logic programming
    what is probabilistic programming