When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Monte Carlo tree search - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_tree_search

    This step is sometimes also called playout or rollout. A playout may be as simple as choosing uniform random moves until the game is decided (for example in chess, the game is won, lost, or drawn). Backpropagation: Use the result of the playout to update information in the nodes on the path from C to R. Step of Monte Carlo tree search.

  3. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.

  4. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    Probabilistic formulation of inverse problems leads to the definition of a probability distribution in the model space. This probability distribution combines prior information with new information obtained by measuring some observable parameters (data). As, in the general case, the theory linking data with model parameters is nonlinear, the ...

  5. Probabilistic programming - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_programming

    Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.

  6. Algorithmic inference - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_inference

    Algorithmic inference gathers new developments in the statistical inference methods made feasible by the powerful computing devices widely available to any data analyst. Cornerstones in this field are computational learning theory, granular computing, bioinformatics, and, long ago, structural probability (Fraser 1966). The main focus is on the ...

  7. Variable elimination - Wikipedia

    en.wikipedia.org/wiki/Variable_elimination

    Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields. [1] It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables.

  8. Bayesian game - Wikipedia

    en.wikipedia.org/wiki/Bayesian_game

    Roughly speaking, Harsanyi defined Bayesian games in the following way: players are assigned a set of characteristics by nature at the start of the game. By mapping probability distributions to these characteristics and by calculating the outcome of the game using Bayesian probability, the result is a game whose solution is, for technical ...

  9. Expectiminimax - Wikipedia

    en.wikipedia.org/wiki/Expectiminimax

    In game theory terms, an expectiminimax tree is the game tree of an extensive-form game of perfect, but incomplete information. In the traditional minimax method, the levels of the tree alternate from max to min until the depth limit of the tree has been reached. In an expectiminimax tree, the "chance" nodes are interleaved with the max and min ...

  1. Related searches probabilistic inference algorithm in python definition example video game

    probabilistic programming languageprobabilistic logic programming
    what is probabilistic programming