Search results
Results From The WOW.Com Content Network
In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
The internal angle of the hexagon is 120 degrees, so three hexagons at a point make a full 360 degrees. It is one of three regular tilings of the plane . The other two are the triangular tiling and the square tiling .
By using homogeneous coordinates, the intersection point of two implicitly defined lines can be determined quite easily. In 2D, every point can be defined as a projection of a 3D point, given as the ordered triple (x, y, w). The mapping from 3D to 2D coordinates is (x′, y′) = ( x / w , y / w ).
A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D 3d, [2 +,6], (2*3), order 12. A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
In China, Pei Xiu (224–271) identified "measuring right angles and acute angles" as the fifth of his six principles for accurate map-making, necessary to accurately establish distances, [5] while Liu Hui (c. 263) gives a version of the calculation above, for measuring perpendicular distances to inaccessible places.
For fixed points A and B, the set of points M in the plane for which the angle ∠AMB is equal to α is an arc of a circle. The measure of ∠ AOB , where O is the center of the circle, is 2 α . The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2 θ that intercepts the same arc on the circle.