Search results
Results From The WOW.Com Content Network
Additionally, the library provides both an object oriented and a procedural interface to most of the image processing filters. The latter enables image analysis workflows with concise syntax. A secondary goal of the library is to promote reproducible image analysis workflows [3] by using the SimpleITK library in conjunction with modern tools ...
The difference between a small and large Gaussian blur. In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.
A special type of scale-space representation is provided by the Gaussian scale space, where the image data in N dimensions is subjected to smoothing by Gaussian convolution. Most of the theory for Gaussian scale space deals with continuous images, whereas one when implementing this theory will have to face the fact that most measurement data ...
The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest-neighbor interpolation. Other scaling methods below are better at preserving smooth contours in the image.
When implementing scale-space smoothing in practice there are a number of different approaches that can be taken in terms of continuous or discrete Gaussian smoothing, implementation in the Fourier domain, in terms of pyramids based on binomial filters that approximate the Gaussian or using recursive filters.
In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.
In image processing and computer vision, smoothing ideas are used in scale space representations. The simplest smoothing algorithm is the "rectangular" or "unweighted sliding-average smooth". This method replaces each point in the signal with the average of "m" adjacent points, where "m" is a positive integer called the "smooth width".
From this classification, it is apparent that we require a continuous semi-group structure, there are only three classes of scale-space kernels with a continuous scale parameter; the Gaussian kernel which forms the scale-space of continuous signals, the discrete Gaussian kernel which forms the scale-space of discrete signals and the time-causal ...