When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the direction of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by Newton in his treatment of birefringence and, more generally, of the splitting of light beams at interfaces into a transmitted ...

  3. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    That energy possessed by a single photon corresponds exactly to the transition between discrete energy levels in an atom (or other system) that emitted the photon; material absorption of a photon is the reverse process. Einstein's explanation of spontaneous emission also predicted the existence of stimulated emission, the principle upon which ...

  4. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...

  5. Einstein's thought experiments - Wikipedia

    en.wikipedia.org/wiki/Einstein's_thought_experiments

    In his 1905 paper on light quanta, [p 16] Einstein created the quantum theory of light. His proposal that light exists as tiny packets (photons) was so revolutionary, that even such major pioneers of quantum theory as Planck and Bohr refused to believe that it could be true.

  6. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  7. Biophotonics - Wikipedia

    en.wikipedia.org/wiki/Biophotonics

    The time delay between excitation and re-emission that occurs when returning to the stable ground state causes the photon that is re-emitted to be a different color (i.e. it relaxes to a lower energy and thus the photon emitted is at a shorter wavelength, as governed by the Plank-Einstein relation =) than the excitation light that was absorbed ...

  8. Scientists challenge Einstein's theory on speed of light - AOL

    www.aol.com/news/2016-11-28-scientists-challenge...

    It’s no secret, Albert Einstein was a bonafide genius, but even geniuses get it wrong sometimes. Skip to main content. 24/7 Help. For premium support please call: 800-290-4726 ...

  9. Photoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Photoelectric_effect

    Einstein theorized that the energy in each quantum of light was equal to the frequency of light multiplied by a constant, later called the Planck constant. A photon above a threshold frequency has the required energy to eject a single electron, creating the observed effect. This was a step in the development of quantum mechanics.