When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pi bond - Wikipedia

    en.wikipedia.org/wiki/Pi_bond

    A typical double bond consists of one sigma bond and one pi bond; for example, the C=C double bond in ethylene (H 2 C=CH 2). A typical triple bond, for example in acetylene (HC≡CH), consists of one sigma bond and two pi bonds in two mutually perpendicular planes containing the bond axis. Two pi bonds are the maximum that can exist between a ...

  3. Double bond - Wikipedia

    en.wikipedia.org/wiki/Double_bond

    The double bond is also stronger, 636 kJ mol −1 versus 368 kJ mol −1 but not twice as much as the pi-bond is weaker than the sigma bond due to less effective pi-overlap. In an alternative representation, the double bond results from two overlapping sp 3 orbitals as in a bent bond .

  4. Sigma-pi and equivalent-orbital models - Wikipedia

    en.wikipedia.org/wiki/Sigma-pi_and_equivalent...

    Linus Pauling proposed that the double bond in ethylene results from two equivalent tetrahedral orbitals from each atom, [5] which later came to be called banana bonds or tau bonds. [6] Erich Hückel proposed a representation of the double bond as a combination of a sigma bond plus a pi bond.

  5. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Pi bonds occur when two orbitals overlap when they are parallel. [9] For example, a bond between two s-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order, single bonds have one sigma bond, double bonds consist of one sigma bond and one pi bond, and triple bonds contain one sigma bond and two pi bonds.

  6. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–carbon_bond

    A double bond is formed with an sp 2-hybridized orbital and a p-orbital that is not involved in the hybridization. A triple bond is formed with an sp-hybridized orbital and two p-orbitals from each atom. The use of the p-orbitals forms a pi bond. [2]

  7. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    The greater stabilization that results from metal-to-ligand bonding is caused by the donation of negative charge away from the metal ion, towards the ligands. This allows the metal to accept the σ bonds more easily. The combination of ligand-to-metal σ-bonding and metal-to-ligand π-bonding is a synergic effect, as each enhances the other.

  8. Double bond rule - Wikipedia

    en.wikipedia.org/wiki/Double_bond_rule

    Moreover, the multiple bonds of the elements with n=2 are much stronger than usual, because lone pair repulsion weakens their sigma bonding but not their pi bonding. [2] An example is the rapid polymerization that occurs upon condensation of disulfur, the heavy analogue of O 2. Numerous exceptions to the rule exist. [3]

  9. Chemical bond - Wikipedia

    en.wikipedia.org/wiki/Chemical_bond

    Two p-orbitals forming a pi-bond. A double bond has two shared pairs of electrons, one in a sigma bond and one in a pi bond with electron density concentrated on two opposite sides of the internuclear axis. A triple bond consists of three shared electron pairs, forming one sigma and two pi bonds. An example is nitrogen.