Search results
Results From The WOW.Com Content Network
Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...
A circle of finite radius has an infinitely distant directrix, while a pair of lines of finite separation have an infinitely distant focus. In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.
describes a right circular conoid with the unit circle of the x-y-plane as directrix and a directrix plane, which is parallel to the y--z-plane. Its axis is the line (,,) . Special features: The intersection with a horizontal plane is an ellipse.
In geometry, a surface S in 3-dimensional Euclidean space is ruled (also called a scroll) if through every point of S, there is a straight line that lies on S. Examples include the plane , the lateral surface of a cylinder or cone , a conical surface with elliptical directrix , the right conoid , the helicoid , and the tangent developable of a ...
The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.
This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).
The directrix of a conic section can be found using Dandelin's construction. Each Dandelin sphere intersects the cone at a circle; let both of these circles define their own planes. The intersections of these two parallel planes with the conic section's plane will be two parallel lines; these lines are the directrices of the conic section.
In mathematics, a directrix is a curve associated with a process generating a geometric object, such as: Directrix (conic section) Directrix (generatrix)