Search results
Results From The WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
Using the expression from Coulomb's law, we get the total field at r by using an integral to sum the field at r due to the infinitesimal charge at each other point s in space, to give = () | | where ρ is the charge density. If we take the divergence of both sides of this equation with respect to r, and use the known theorem [9]
The term on the left is the rate of change of the charge density ρ at a point. The term on the right is the divergence of the current density J at the same point. The equation equates these two factors, which says that the only way for the charge density at a point to change is for a current of charge to flow into or out of the point.
For example, if in the mass continuity equation for flowing water, u is the water's velocity at each point, and ρ is the water's density at each point, then j would be the mass flux, also known as the material discharge. In a well-known example, the flux of electric charge is the electric current density.
The equations introduce the electric field, E, a vector field, and the magnetic field, B, a pseudovector field, each generally having a time and location dependence. The sources are the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J.
These equations taken together are as powerful and complete as Maxwell's equations. Moreover, the problem has been reduced somewhat, as the electric and magnetic fields together had six components to solve for. [1] In the potential formulation, there are only four components: the electric potential and the three components of the vector potential.
Generically, these equations state that the divergence of the flow of the conserved quantity is equal to the distribution of sources or sinks of that quantity. The divergence theorem states that any such continuity equation can be written in a differential form (in terms of a divergence) and an integral form (in terms of a flux). [12]
More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point. As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the ...