When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    For example, if in the mass continuity equation for flowing water, u is the water's velocity at each point, and ρ is the water's density at each point, then j would be the mass flux, also known as the material discharge. In a well-known example, the flux of electric charge is the electric current density.

  4. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Using the expression from Coulomb's law, we get the total field at r by using an integral to sum the field at r due to the infinitesimal charge at each other point s in space, to give = () | | where ρ is the charge density. If we take the divergence of both sides of this equation with respect to r, and use the known theorem [9]

  5. Gauge fixing - Wikipedia

    en.wikipedia.org/wiki/Gauge_fixing

    The Coulomb gauge admits a natural Hamiltonian formulation of the evolution equations of the electromagnetic field interacting with a conserved current, [citation needed] which is an advantage for the quantization of the theory. The Coulomb gauge is, however, not Lorentz covariant.

  6. Charge conservation - Wikipedia

    en.wikipedia.org/wiki/Charge_conservation

    The term on the left is the rate of change of the charge density ρ at a point. The term on the right is the divergence of the current density J at the same point. The equation equates these two factors, which says that the only way for the charge density at a point to change is for a current of charge to flow into or out of the point.

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The equations introduce the electric field, E, a vector field, and the magnetic field, B, a pseudovector field, each generally having a time and location dependence. The sources are the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J.

  8. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Generically, these equations state that the divergence of the flow of the conserved quantity is equal to the distribution of sources or sinks of that quantity. The divergence theorem states that any such continuity equation can be written in a differential form (in terms of a divergence) and an integral form (in terms of a flux). [12]

  9. Electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Electric_dipole_moment

    A formulation of Maxwell's equations based upon division of charges and currents into "free" and "bound" charges and currents leads to introduction of the D- and P-fields: = +, where P is called the polarization density. In this formulation, the divergence of this equation yields: = = +, and as the divergence term in E is the total charge, and ...