Search results
Results From The WOW.Com Content Network
Fmoc-Oxyma-Synthese. or the coupling reagent COMU which is readily soluble as a dimethylmorpholine-uronium salt and which, like Oxyma, is superior to the standard additive HOBt for the suppression of racemization and acylation efficiency and is comparable to HOAt without presenting an explosion risk such as the benzotriazoles. [5]
In one important reaction type, a main group organometallic compound of the type R-M (where R = organic group, M = main group centre metal atom) reacts with an organic halide of the type R'-X with formation of a new carbon-carbon bond in the product R-R'. The most common type of coupling reaction is the cross coupling reaction. [1] [2] [3]
Amide coupling is one of the most common reactions in organic chemistry and DMTMM is one reagent used for that reaction. The mechanism of DMTMM coupling is similar to other common amide coupling reactions involving activated carboxylic acids. [1] Its precursor, 2-chloro-4,6,-dimethoxy-1,3,5-triazine (CDMT), has also been used for amide coupling.
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent.
Cross-couplings are a subset of the more general coupling reactions. Often cross-coupling reactions require metal catalysts. One important reaction type is this: R−M + R'−X → R−R' + MX (R, R' = organic fragments, usually aryl; M = main group center such as Li or MgX; X = halide) These reactions are used to form carbon–carbon bonds but ...
Shimizu and Seki realized the efficient synthesis of (+)-biotin via the Fukuyama coupling of the thiolactone 1 and an easily prepared alkyl zinc reagent 2 in the presence of catalytic PdCl 2 (PPh 3) 2. The reaction generated an alcohol 3 which was directly reacted without purification with PTSA to afford alkene 4 in 86% yield as a single isomer.
N,N′-Dicyclohexylcarbodiimide (DCC or DCCD) [1] is an organic compound with the chemical formula (C 6 H 11 N) 2 C. It is a waxy white solid with a sweet odor. Its primary use is to couple amino acids during artificial peptide synthesis.
TCFH itself is a common reagent used in the preparation of uronium and guanidinium salts used for amide bond formation and peptide synthesis, such as HATU. [3] [4] [5]Amide bond formation with TCFH can be performed in a wide range of organic solvents, most commonly acetonitrile, but also water [6] and in the solid state. [7]