Search results
Results From The WOW.Com Content Network
An absolutely continuous probability distribution is a probability distribution on the real numbers with uncountably many possible values, such as a whole interval in the real line, and where the probability of any event can be expressed as an integral. [19]
In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability γ {\displaystyle \gamma } to fall within it.
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
At the center of each interval is the sample mean, marked with a diamond. The blue intervals contain the population mean, and the red ones do not. This probability distribution highlights some different confidence intervals. In frequentist statistics, a confidence interval (CI) is an interval which is expected to contain the parameter being ...
By contrast, the (true) coverage probability is the actual probability that the interval contains the parameter. If all assumptions used in deriving a confidence interval are met, the nominal coverage probability will equal the coverage probability (termed "true" or "actual" coverage probability for emphasis).
The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable X {\displaystyle X} under no constraint other than that it is contained in the distribution's support.
In probability theory, the Fourier transform of the probability distribution of a real-valued random variable is closely connected to the characteristic function of that variable, which is defined as the expected value of , as a function of the real variable (the frequency parameter of the Fourier transform).