Search results
Results From The WOW.Com Content Network
Programming with Big Data in R (pbdR) [1] is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation. [ 2 ] [ 3 ] The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical ...
R. Lopez Robot Execution Failures Dataset 5 data sets that center around robotic failure to execute common tasks. Integer valued features such as torque and other sensor measurements. 463 Text Classification 1999 [206] L. Seabra et al. Pittsburgh Bridges Dataset Design description is given in terms of several properties of various bridges.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.
The goal of logistic regression is to use the dataset to create a predictive model of the outcome variable. As in linear regression, the outcome variables Y i are assumed to depend on the explanatory variables x 1,i... x m,i. Explanatory variables. The explanatory variables may be of any type: real-valued, binary, categorical, etc.
When the feature learning is performed in an unsupervised way, it enables a form of semisupervised learning where features learned from an unlabeled dataset are then employed to improve performance in a supervised setting with labeled data. [13] [14] Several approaches are introduced in the following.
Data loading, or simply loading, is a part of data processing where data is moved between two systems so that it ends up in a staging area on the target system.. With the traditional extract, transform and load (ETL) method, the load job is the last step, and the data that is loaded has already been transformed.
Compared to libraries in other programming languages, R packages must conform to a relatively strict specification. [3] The Writing R Extensions manual [7] specifies a standard directory structure for R source code, data, documentation, and package metadata, which enables them to be installed and loaded using R's in-built package management ...