Search results
Results From The WOW.Com Content Network
Similarly, vec(A T) is the vector obtaining by vectorizing A in row-major order. The cycles and other properties of this permutation have been heavily studied for in-place matrix transposition algorithms. In the context of quantum information theory, the commutation matrix is sometimes referred to as the swap matrix or swap operator [1]
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
To add an extra row into a table, you'll need to insert an extra row break and the same number of new cells as are in the other rows. The easiest way to do this in practice, is to duplicate an existing row by copying and pasting the markup. It's then just a matter of editing the cell contents.
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
Programming languages that implement matrices may have easy means for vectorization. In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well.
For each table, insert an alpha-prefix on each column (making each row-token "|-" to sort as column zero, like prefix "Row124col00"), then sort into a new file, and then de-prefix the column entries. Again, bear in mind, the tedious hand-editing of items in each row is often faster than the potential delay of automated edits gone awry.
Typically, the matrix is assumed to be stored in row-major or column-major order (i.e., contiguous rows or columns, respectively, arranged consecutively). Performing an in-place transpose (in-situ transpose) is most difficult when N ≠ M , i.e. for a non-square (rectangular) matrix, where it involves a complex permutation of the data elements ...