Ads
related to: surface profile tolerance example
Search results
Results From The WOW.Com Content Network
Geometrical Product Specification and Verification (GPS&V) [1] is a set of ISO standards developed by ISO Technical Committee 213. [2] The aim of those standards is to develop a common language to specify macro geometry (size, form, orientation, location) and micro-geometry (surface texture) of products or parts of products so that the language can be used consistently worldwide.
Example of true position geometric control defined by basic dimensions and datum features. Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances via a symbolic language on engineering drawings and computer-generated 3D models that describes a physical object's nominal geometry and the permissible variation thereof.
Surface roughness or simply roughness is the quality of a surface of not being smooth and it is hence linked to human perception of the surface texture. From a mathematical perspective it is related to the spatial variability structure of surfaces, and inherently it is a multiscale property.
The standard (size) tolerances are divided into two categories: hole and shaft. They are labelled with a letter (capitals for holes and lowercase for shafts) and a number. For example: H7 (hole, tapped hole, or nut) and h7 (shaft or bolt). H7/h6 is a very common standard tolerance which gives a tight fit.
Tolerance analysis is the general term for activities related to the study of accumulated variation in mechanical parts and assemblies. Its methods may be used on other types of systems subject to accumulated variation, such as mechanical and electrical systems.
ASME Y14.5 is a complete definition of geometric dimensioning and tolerancing. It contains 15 sections which cover symbols and datums as well as tolerances of form, orientation, position, profile and runout. [3] It is complemented by ASME Y14.5.1 - Mathematical Definition of Dimensioning and Tolerancing Principles.
Despite its high stability, cast iron remains unsuitable for use as a normal surface plate in high-tolerance production applications because of thermal expansion. The nature and use of a master surface, by contrast, already necessitates expensive measures to control temperature regardless of material choice, and cast iron becomes preferable.
BS 8888 is the British standard developed by the BSI Group for technical product documentation, geometric product specification, geometric tolerance specification and engineering drawings. [ 1 ] History