When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1. Or x and y can both be treated as unknowns, and then there are many solutions to the equation; a symbolic solution is (x, y) = (a + 1, a), where the variable a may take any value. Instantiating a symbolic solution with specific numbers ...

  3. How to Solve It - Wikipedia

    en.wikipedia.org/wiki/How_to_Solve_It

    Pólya mentions that there are many reasonable ways to solve problems. [3] The skill at choosing an appropriate strategy is best learned by solving many problems. You will find choosing a strategy increasingly easy. A partial list of strategies is included: Guess and check [9] Make an orderly list [10] Eliminate possibilities [11] Use symmetry [12]

  4. Transcendental equation - Wikipedia

    en.wikipedia.org/wiki/Transcendental_equation

    Graphical solution of sin(x)=ln(x) Approximate numerical solutions to transcendental equations can be found using numerical, analytical approximations, or graphical methods. Numerical methods for solving arbitrary equations are called root-finding algorithms. In some cases, the equation can be well approximated using Taylor series near the zero.

  5. Chakravala method - Wikipedia

    en.wikipedia.org/wiki/Chakravala_method

    The chakravala method (Sanskrit: चक्रवाल विधि) is a cyclic algorithm to solve indeterminate quadratic equations, including Pell's equation.It is commonly attributed to Bhāskara II, (c. 1114 – 1185 CE) [1] [2] although some attribute it to Jayadeva (c. 950 ~ 1000 CE). [3]

  6. Beal conjecture - Wikipedia

    en.wikipedia.org/wiki/Beal_conjecture

    To illustrate, the solution + = has bases with a common factor of 3, the solution + = has bases with a common factor of 7, and + = + has bases with a common factor of 2. Indeed the equation has infinitely many solutions where the bases share a common factor, including generalizations of the above three examples, respectively

  7. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.

  8. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    [5] However, the existence of specific equations that cannot be solved in radicals seems to be a consequence of Abel's proof, as the proof uses the fact that some polynomials in the coefficients are not the zero polynomial, and, given a finite number of polynomials, there are values of the variables at which none of the polynomials takes the ...

  9. Iterated function - Wikipedia

    en.wikipedia.org/wiki/Iterated_function

    In general, the following identity holds for all non-negative integers m and n, = = + . This is structurally identical to the property of exponentiation that a m a n = a m + n.. In general, for arbitrary general (negative, non-integer, etc.) indices m and n, this relation is called the translation functional equation, cf. Schröder's equation and Abel equation.