When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.

  3. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to ...

  4. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    A linear combination of v 1 and v 2 is any vector of the form [] + [] = [] The set of all such vectors is the column space of A. In this case, the column space is precisely the set of vectors ( x , y , z ) ∈ R 3 satisfying the equation z = 2 x (using Cartesian coordinates , this set is a plane through the origin in three-dimensional space ).

  6. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    This function is unusual because it actually attains the limiting values of -1 and 1 within a finite range, meaning that its value is constant at -1 for all and at 1 for all . Nonetheless, it is smooth (infinitely differentiable, C ∞ {\displaystyle C^{\infty }} ) everywhere , including at x = ± 1 {\displaystyle x=\pm 1} .

  7. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of the kernel of f). [1 ...

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Top: The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e 1 and e 2. Left: The action of V ⁎, a rotation, on D, e 1, and e 2. Bottom: The action of Σ, a scaling by the singular values σ 1 horizontally and σ 2 vertically. Right: The action of U, another rotation.

  9. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself (an endomorphism) such that =. That is, whenever P {\displaystyle P} is applied twice to any vector, it gives the same result as if it were applied once (i.e. P {\displaystyle P} is idempotent ).