Search results
Results From The WOW.Com Content Network
The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions. [1]Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum.
Although the pigeonhole principle appears as early as 1624 in a book attributed to Jean Leurechon, [2] it is commonly called Dirichlet's box principle or Dirichlet's drawer principle after an 1834 treatment of the principle by Peter Gustav Lejeune Dirichlet under the name Schubfachprinzip ("drawer principle" or "shelf principle"). [3]
Lord Kelvin and Dirichlet suggested a solution to the problem by a variational method based on the minimization of "Dirichlet's energy". According to Hans Freudenthal (in the Dictionary of Scientific Biography , vol. 11), Bernhard Riemann was the first mathematician who solved this variational problem based on a method which he called Dirichlet ...
Johann Peter Gustav Lejeune Dirichlet (/ ˌ d ɪər ɪ ˈ k l eɪ /; [1] German: [ləˈʒœn diʁiˈkleː]; [2] 13 February 1805 – 5 May 1859) was a German mathematician.In number theory, he proved special cases of Fermat's last theorem and created analytic number theory.
This theorem is a consequence of the pigeonhole principle. Peter Gustav Lejeune Dirichlet who proved the result used the same principle in other contexts (for example, the Pell equation) and by naming the principle (in German) popularized its use, though its status in textbook terms comes later. [2] The method extends to simultaneous ...
Further discussion of Dirichlet's principle on a Riemann surface can be found in Hurwitz & Courant (1929), Ahlfors (1947), Courant (1950), Schiffer & Spencer (1954), Pfluger (1957) and Ahlfors & Sario (1960). Historical note. Weyl (1913) proved the existence of the harmonic function u by giving a direct
Dirichlet's theorem may refer to any of several mathematical theorems due to Peter Gustav Lejeune Dirichlet. Dirichlet's theorem on arithmetic progressions; Dirichlet's approximation theorem; Dirichlet's unit theorem; Dirichlet conditions; Dirichlet boundary condition; Dirichlet's principle; Pigeonhole principle, sometimes also called Dirichlet ...
Dirichlet distributions are very often used as prior distributions in Bayesian inference. The simplest and perhaps most common type of Dirichlet prior is the symmetric Dirichlet distribution, where all parameters are equal. This corresponds to the case where you have no prior information to favor one component over any other.