Search results
Results From The WOW.Com Content Network
Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.
The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in the sense of precomposition, above. The fibers then travel along with the points in the base space at which they are anchored: the ...
This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on N {\displaystyle N} may be pulled back to M {\displaystyle M} using ϕ {\displaystyle \phi } .
In mathematics, a pullback bundle or induced bundle [1] [2] [3] is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f * E over B′. The fiber of f * E over a point b′ in B′ is just the fiber of E over f(b′).
The limit of this diagram is called the J th power of X and denoted X J. Equalizers. If J is a category with two objects and two parallel morphisms from one object to the other, then a diagram of shape J is a pair of parallel morphisms in C. The limit L of such a diagram is called an equalizer of those morphisms. Kernels.
Pullback, a name given to two different mathematical processes; Pullback (cohomology), a term in topology; Pullback (differential geometry), a term in differential geometry; Pullback (category theory), a term in category theory; Pullback attractor, an aspect of a random dynamical system; Pullback bundle, the fiber bundle induced by a map of its ...
Then C has all pullbacks, because the pullback of two arrows with codomain Z is given by the product in C/Z. For every arrow p : X → Y, let P denote the corresponding object of C/Y. Taking pullbacks along p gives a functor p * : C/Y → C/X which has both a left and a right adjoint.
The simplest case of a blowup is the blowup of a point in a plane. Most of the general features of blowing up can be seen in this example. The blowup has a synthetic description as an incidence correspondence.