When.com Web Search

  1. Ad

    related to: affine plane geometry definition sociology quizlet quiz

Search results

  1. Results From The WOW.Com Content Network
  2. Affine plane (incidence geometry) - Wikipedia

    en.wikipedia.org/wiki/Affine_plane_(incidence...

    A similar construction, starting from the projective plane of order 3, produces the affine plane of order 3 sometimes called the Hesse configuration. An affine plane of order n exists if and only if a projective plane of order n exists (however, the definition of order in these two cases is not the same). Thus, there is no affine plane of order ...

  3. Affine plane - Wikipedia

    en.wikipedia.org/wiki/Affine_plane

    Typical examples of affine planes are Euclidean planes, which are affine planes over the reals equipped with a metric, the Euclidean distance.In other words, an affine plane over the reals is a Euclidean plane in which one has "forgotten" the metric (that is, one does not talk of lengths nor of angle measures).

  4. Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Affine_geometry

    On the one hand, affine geometry is Euclidean geometry with congruence left out; on the other hand, affine geometry may be obtained from projective geometry by the designation of a particular line or plane to represent the points at infinity. [19] In affine geometry, there is no metric structure but the parallel postulate does hold.

  5. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  6. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    The simplest affine plane contains only four points; it is called the affine plane of order 2. (The order of an affine plane is the number of points on any line, see below.) Since no three are collinear, any pair of points determines a unique line, and so this plane contains six lines.

  7. Incidence structure - Wikipedia

    en.wikipedia.org/wiki/Incidence_structure

    Any graph (which need not be simple; loops and multiple edges are allowed) is a uniform incidence structure with two points per line. For these examples, the vertices of the graph form the point set, the edges of the graph form the line set, and incidence means that a vertex is an endpoint of an edge.

  8. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    In the terms of Felix Klein's Erlangen programme, we read off from this that Euclidean geometry, the geometry of the Euclidean group of symmetries, is, therefore, a specialisation of affine geometry. All affine theorems apply. The origin of Euclidean geometry allows definition of the notion of distance, from which angle can then be deduced.

  9. Line at infinity - Wikipedia

    en.wikipedia.org/wiki/Line_at_infinity

    In the affine plane, a line extends in two opposite directions. In the projective plane, the two opposite directions of a line meet each other at a point on the line at infinity. Therefore, lines in the projective plane are closed curves, i.e., they are cyclical rather than linear. This is true of the line at infinity itself; it meets itself at ...