When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximal ideal - Wikipedia

    en.wikipedia.org/wiki/Maximal_ideal

    If F is a field, then the only maximal ideal is {0}. In the ring Z of integers, the maximal ideals are the principal ideals generated by a prime number. More generally, all nonzero prime ideals are maximal in a principal ideal domain. The ideal (,) is a maximal ideal in ring [].

  3. Local ring - Wikipedia

    en.wikipedia.org/wiki/Local_ring

    R has a unique maximal left ideal. R has a unique maximal right ideal. 1 ≠ 0 and the sum of any two non-units in R is a non-unit. 1 ≠ 0 and if x is any element of R, then x or 1 − x is a unit. If a finite sum is a unit, then it has a term that is a unit (this says in particular that the empty sum cannot be a unit, so it implies 1 ≠ 0).

  4. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).

  5. Regular local ring - Wikipedia

    en.wikipedia.org/wiki/Regular_local_ring

    Still more generally, if A is a regular local ring, then the formal power series ring A[[x]] is regular local. If Z is the ring of integers and X is an indeterminate, the ring Z[X] (2, X) (i.e. the ring Z[X] localized in the prime ideal (2, X) ) is an example of a 2-dimensional regular local ring which does not contain a field.

  6. Discrete valuation ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_valuation_ring

    The maximal ideal of () is the principal ideal generated by 2, i.e. (), and the "unique" irreducible element (up to units) is 2 (this is also known as a uniformizing parameter). Note that Z ( 2 ) {\displaystyle \mathbb {Z} _{(2)}} is the localization of the Dedekind domain Z {\displaystyle \mathbb {Z} } at the prime ideal generated by 2.

  7. Prime ideal - Wikipedia

    en.wikipedia.org/wiki/Prime_ideal

    In any ring R, a maximal ideal is an ideal M that is maximal in the set of all proper ideals of R, i.e. M is contained in exactly two ideals of R, namely M itself and the whole ring R. Every maximal ideal is in fact prime. In a principal ideal domain every nonzero prime ideal is maximal

  8. Localization (commutative algebra) - Wikipedia

    en.wikipedia.org/wiki/Localization_(commutative...

    If = is the complement of a prime ideal , then , denoted , is a local ring; that is, it has only one maximal ideal. Properties to be moved in another section Localization commutes with formations of finite sums, products, intersections and radicals; [ 1 ] e.g., if I {\displaystyle {\sqrt {I}}} denote the radical of an ideal I in R , then

  9. Completion of a ring - Wikipedia

    en.wikipedia.org/wiki/Completion_of_a_ring

    The completion of a Noetherian local ring with respect to the unique maximal ideal is a Noetherian local ring. [ 3 ] The completion is a functorial operation: a continuous map f : R → S of topological rings gives rise to a map of their completions, f ^ : R ^ → S ^ . {\displaystyle {\widehat {f}}:{\widehat {R}}\to {\widehat {S}}.}