Search results
Results From The WOW.Com Content Network
It was first conceptualized by August Krogh in 1919 with the help of Agner Krarup Erlang to describe oxygen supply in living tissues from human blood vessels. [1] [2] Its applicability has been extended to various academic fields, and has been successful explaining drug diffusion, water transport, and ice formation in tissues. [3]
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential .
Oxygen in the tracheal tube first dissolves in the liquid of the tracheole and then diffuses across the cell membrane into the cytoplasm of an adjacent cell. At the same time, carbon dioxide, produced as a waste product of cellular respiration, diffuses out of the cell and, eventually, out of the body through the tracheal system.
If there is a change in the potential energy of a system; for example μ 1 >μ 2 (μ is Chemical potential) an energy flow will occur from S 1 to S 2, because nature always prefers low energy and maximum entropy. Molecular diffusion is typically described mathematically using Fick's laws of diffusion.
The blood or other body fluid must be in intimate contact with the respiratory surface for ease of diffusion. [3] A high surface area is crucial to the gas exchange of aquatic organisms, as water contains only a small fraction of the dissolved oxygen than air does, and it diffuses more slowly. A cubic meter of air contains about 275 grams of ...
Reaction–diffusion systems are mathematical models that correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out ...
Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore with a narrow diameter (2–50 nm) because molecules frequently collide with the pore wall. [1]