When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stochastic ordering - Wikipedia

    en.wikipedia.org/wiki/Stochastic_ordering

    Stochastic dominance relations are a family of stochastic orderings used in decision theory: [1] Zeroth-order stochastic dominance: A ≺ ( 0 ) B {\displaystyle A\prec _{(0)}B} if and only if A ≤ B {\displaystyle A\leq B} for all realizations of these random variables and A < B {\displaystyle A<B} for at least one realization.

  3. Stochastic dominance - Wikipedia

    en.wikipedia.org/wiki/Stochastic_dominance

    Stochastic dominance is a partial order between random variables. [1] [2] It is a form of stochastic ordering.The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers.

  4. Filtration (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Filtration_(mathematics)

    A σ-algebra defines the set of events that can be measured, which in a probability context is equivalent to events that can be discriminated, or "questions that can be answered at time ". Therefore, a filtration is often used to represent the change in the set of events that can be measured, through gain or loss of information .

  5. Filtration (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Filtration_(probability...

    In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes.

  6. Girsanov theorem - Wikipedia

    en.wikipedia.org/wiki/Girsanov_theorem

    Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if Q is a measure that is absolutely continuous with respect to P then every P-semimartingale is a Q-semimartingale.

  7. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...

  8. Milstein method - Wikipedia

    en.wikipedia.org/wiki/Milstein_method

    Consider the autonomous Itō stochastic differential equation: = + with initial condition =, where denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [,]. Then the Milstein approximation to the true solution X {\displaystyle X} is the Markov chain Y {\displaystyle Y} defined as follows:

  9. Tanaka's formula - Wikipedia

    en.wikipedia.org/wiki/Tanaka's_formula

    Tanaka's formula is the explicit Doob–Meyer decomposition of the submartingale |B t | into the martingale part (the integral on the right-hand side, which is a Brownian motion [1]), and a continuous increasing process (local time).

  1. Related searches stochastic ordering formula example questions worksheet printable 1 2 page calendar

    stochastic orderstochastic dominance wiki
    stochastic dominance formulastochastic process filtration