Ads
related to: stochastic ordering formula example questions worksheet printable 1 2 sheet
Search results
Results From The WOW.Com Content Network
Stochastic dominance relations are a family of stochastic orderings used in decision theory: [1] Zeroth-order stochastic dominance: A ≺ ( 0 ) B {\displaystyle A\prec _{(0)}B} if and only if A ≤ B {\displaystyle A\leq B} for all realizations of these random variables and A < B {\displaystyle A<B} for at least one realization.
Stochastic dominance is a partial order between random variables. [1] [2] It is a form of stochastic ordering.The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers.
A σ-algebra defines the set of events that can be measured, which in a probability context is equivalent to events that can be discriminated, or "questions that can be answered at time ". Therefore, a filtration is often used to represent the change in the set of events that can be measured, through gain or loss of information .
Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if Q is a measure that is absolutely continuous with respect to P then every P-semimartingale is a Q-semimartingale.
Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...
In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. [1] It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.
In the theory of probability for stochastic processes, the reflection principle for a Wiener process states that if the path of a Wiener process f(t) reaches a value f(s) = a at time t = s, then the subsequent path after time s has the same distribution as the reflection of the subsequent path about the value a. [1]
In probability theory, a stochastic process is said to have stationary increments if its change only depends on the time span of observation, but not on the time when the observation was started. Many large families of stochastic processes have stationary increments either by definition (e.g. Lévy processes) or by construction (e.g. random walks)